ENERGY.GOV Office of

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Building Energy Codes Program

EERE » Home

Stretch Codes

A stretch code is an adoptable and enforceable code that exceeds the requirements of the base code. Stretch codes typically enhance building energy efficiency and may also contain additional considerations like building material impacts, water efficiency, renewable energy, and resilience or grid security. Stretch codes may be required for specific building types, building sizes, certain funding or incentive programs, or be voluntary.

Many times, a stretch code will be based on the next version of the model code; for example, a state may adopt the 2021 International Energy Conservation Code (IECC) as the base code and the 2024 IECC as the stretch code. A state or jurisdiction (e.g., OR, MA, VT) may also produce and adopt a state- or jurisdictionspecific stretch code. A stretch code is adopted and developed using the same public process as other energy codes and provides uniform criteria across a state or municipality.

The approach to developing stretch codes varies and may set requirements for a single code cycle (e.g., 20 percent better than ASHRAE 90.1) or may set an end goal that can be achieved over multiple code cycles. For example, British Columbia, Canada, has adopted a "step" stretch code which is a stretch code with multiple levels of increasingly stringent compliance options. Stretch code compliance paths vary from prescriptive, performance, or points based. LEARN MORE...

ENERGY AND ECONOMIC ANALYSIS METHODOLOGY NATIONAL AND STATE ANALYSIS STATE SAVINGS CALCULATORS Overall, stretch codes benefit communities, home and building owners, and renters by:

- Reducing operational building and utility costs.
- Improving occupant comfort, and health, and resilience.
- Creating and sustaining efficiency-related jobs.
- Raising a building or home valuation.
- Strengthening the building and design industry and moving market trends toward efficiency.

State and Local Stretch Code Maps

The Building Energy Codes Program (BECP) tracks stretch codes at the state and local levels. The residential and commercial stretch code maps and corresponding tables visualize the current state of stretch codes in the United States. Navigate the maps below by selecting a state or local jurisdiction to learn what type of stretch code has been adopted and other information. The maps are updated on a quarterly basis.

State and Local Residential Stretch Code

State and Local Commercial Stretch Code

In response to the high demand, the U.S. Department of Energy (DOE) and Pacific Northwest National Laboratory (PNNL) have developed a series of technical briefs supporting national, state, and local initiatives to update and advance building energy codes. These technical briefs are presented in a module-based format, based on technologies, measures or practices (or optimized combinations) that can be incorporated as "plug-ins" to building energy codes. These plug-ins are made available for adoption directly by state and local governments pursuing advanced energy savings, as well as for future consideration for the International Energy Conservation Code (IECC) and Standard 90.1. The collection supports the adoption of stretch codes, helping state and local governments pursue their energy and savings goals, as well as the Department's broader mission to provide technical assistance supporting the implementation of state and local energy codes (42 USC 6833).

Currently available plug-ins are presented below. Each tech brief provides an overview of a given topic, plus supporting technical information and analysis estimating the associated impacts. In addition, sample code language is provided to illustrate how a given concept can be overlaid on top of the current model codes (e.g., IECC or Standard 90.1). Additional technical assistance is available from DOE and PNNL to support states and local governments who are interested in adding these concepts or other "stretch" provisions to their building codes. Assistance typically includes technical guidance, customized analysis of expected impacts (e.g., based on state-specific building stock, climate considerations, or utility prices), and further tailored code language to overlay state building codes or other standards. DOE works continuously with states and local governments to identify new concepts and practices that support their needs and plans to issue additional plug-in concepts in the future on a rolling basis.

Technical Briefs

Title	Description	Report Link	Fact Sheet Link
Service Water Heating System Performance Approach	This technical brief provides an additional Service Water Heating (SWH) System Performance path that goes beyond the prescriptive energy code by outlining a comprehensive performance- based approach for SWH system evaluation and analysis.	SWH Performance Approach Tech Brief 🔁	
Simplified HVAC System Performance	The technical brief provides an additional heating, ventilation, and air conditioning (HVAC) System Performance (HSP) path that goes beyond the prescriptive energy code. It	HSP Tech Brief	HSP Fact Sheet

	provides a		
	comprehensive		
	performance-		
	based approach		
	for HVAC system		
	evaluation and		
	analysis. The		
	approach		
	develops a Total		
	System		
	Performance Ratio		
	(TSPR) to compare		
	proposed, target.		
	and reference		
	HVAC systems.		
	,		
	The technical		
	support		
	documentation		
	(TSD) provides		
	background on		
	development of		
	mechanical		
	system		
	performance		
	factors for use in		
	the HSP for		
	ASHRAE Standard		
	90.1-2022. It		
	provides		
	documentation of		
	HVAC system		
	input parameters		
	and simplified		
	HVAC measure		
	modeling		
	approaches.		
Energy	This technical	Energy	Energy
Credits	brief provides	Credits Tech	Credits
	additional	Brief 🛃	Fact
	efficiency .	Energy	Sheet 占
	measures that go	Credits	
	beyond the	Application	
	current	Guide:	
	prescriptive	ASHRAE	

	commercial	Standard	
	energy codes. It	90.1-2022 🛃	
	demonstrates		
	relative savings		
	for multiple		
	measures and		
	shows a base		
	savings package		
	by building type		
	and climate zone		
	that is cost		
	effective for		
	building owners		
	and tenants.		
DDS and	This tashsiss!	Code	
EPS and	hrief presents	Alignment	
Energy Code	brief presents		
Alignment	recommendations	lech Brief 년	
	for changes that		
	may be		
	incorporated into		
	energy codes to		
	facilitate future		
	compliance with		
	the building		
	performance		
	standard (BPS)		
	policies that a		
	newly constructed		
	building has to		
	meet once it is		
	occupied. It		
	provides		
	background on		
	the basis and		
	benefits of the		
	proposed changes		
	and model code		
	language that can		
	be inserted into		
	ASHRAE Standard		
	90.1 or adapted		
	into other energy		
	codes.		

			(
GEB	To assist states	GEB Tech	GEB Fact
(Demand	and jurisdictions	Brief 🛃	Sheet 🖪
Response)	that have		
	requested		
	assistance in		
	future proofing		
	their buildings,		
	this technical		
	brief provides		
	requirements for		
	demand-		
	responsive		
	thermostats,		
	water heaters, and		
	energy storage to		
	provide additional		
	grid flexibility to		
	states and		
	jurisdictions		
	working to		
	strengthen the		
	security of their		
	electrical grid. It		
	provides		
	background on		
	the benefits of		
	these devices,		
	impacts on the		
	cost of		
	construction, and		
	model code		
	language that can		
	be plugged into		
	the IECC or		
	adapted into		
	other energy		
	codes.		
Electric	This technical	Electric	Electric
Readiness	brief provides	Readiness	Readiness
	requirements for	Tech Brief 🛃	Fact
	electric readiness		Sheet 🛃
	for the future		
	installation of		
	these		
	technologies. It		

	provides background on the basis and benefits of the provisions, and model code language that can be plugged into the IECC or adapted into other energy codes.		
EV Charging	States and local governments have requested that DOE provide technical assistance to develop energy code overlay requirements to support their policy goals. This technical brief provides code language for PEV charging infrastructure for adoption by model codes, and states and local governments.	EV Tech Brief 🕒	EV Fact Sheet 🕒
Zero Code Plug-In	This commercial zero code plug-in technical brief presents modified code language that can be amended to adopted commercial building model energy codes to achieve net zero	Commercial Plug-In 🖪	

energy (NZE) in	
newly constructed	
buildings, either	
immediately or	
over several code	
cycles. An option	
to achieve net	
zero operational	
energy emissions	
(NZOEE) has also	
been included to	
align with the	
ASHRAE 90.1	
standard.	

Code Change Proposals Currently Being Considered

Below are draft code change proposals DOE is considering for stretch code and model code development.

Title	Proposal Link
Clarify Slab Insulation Requirements	Proposal 💪
Commercial PV Required	Proposal ዾ
Decorative Lighting Power Reduction	Proposal 💪
Demand Control Ventilation Update	Proposal 💪
EV Charging	Proposal 💪
Expanded C406 Energy and Demand Response Credits	Proposal 💪
Exterior Lighting	Proposal 🛃
HVAC Total System Performance Ratio	Proposal 💪
Interior Lighting LPD Update	Proposal 💪
Lighting System Performance	Proposal 💪
Residential Demand Response	Proposal 🗳

Residential Electrification	Proposal
Residential PV Required	Proposal 💪
Residential Renewable Tradeoffs for Performance Path	Proposal 💪

Other Resources

Building Energy Codes and Grid-Interactive Efficient Buildings 🗳

Filling the Efficiency Gap to Achieve Zero-Energy Buildings with Energy Codes 🗳

Realizing Demand Flexibility with Commercial Building Energy Codes 🗳

DOE BUILDING ENERGY CODES PROGRAM

The U.S. Department of Energy supports the advancement of building energy codes, including stretch codes that empower states and local governments in achieving their energy and climate goals. Modern building codes and standards offer cost-effective solutions, contributing to lower utility bills for homes and businesses, and helping to mitigate the impacts of climate change.

Building Energy Codes Program is a resource of the U.S. Department of Energy's Building Technologies Office.

Contact | Vulnerability Disclosure Program | Building Technologies Office

OFFICE of ENERGY EFFICIENCY AND			
RENEWABLE ENERGY	ABOUT EERE	ENERGY.GOV	FEDERAL
Forrestal Building	Careers and	RESOURCES	GOVERNMENT
Ave. SW	Internships	Budget & Performance	USA.gov
Washington DC 20585	EERE Home	Directives, Delegations	The White House
\sim \sim \sim	Publications Library	& Requirements	Vote.gov
	Contact EERE	Freedom of	
(in)		Information Act (FOIA)	
<u> </u>		Inspector General	
An office of		Privacy Program	
ENERGY.			

Notice of EEO Findings of Discrimination • Open Gov • Accessibility • Privacy • Information Quality • No Fear Act • Web Policies • Vulnerability Disclosure Policy • Whistleblower Protection